On the Relation between Lexical V-V Compounds and the Compounding Parameter

Yasuhiro Kido
Kobe University, University of Connecticut, JSPS Research Fellow

Abstract
This paper proposes that one of the parameters required for Japanese V-V compounds (JVVCs) is the Compounding Parameter (TCP) (Snyder 2012, 2016). In support of this proposal we show that Generalized Modification (GM) applies in JVVCs. In addition, we note that the type of JVVCs in which V₁ merges into V₂ directly (V-V type) bears a morphological resemblance to N-N compounding, in that no linking element is present. This suggests that V-V-type JVVCs are similar to N-N compounding. Moreover, in a spontaneous-production study using CHILDES, Aki, a Japanese-speaking child, first produces V-V-type JVVCs and N-N compounding at age 2;05, and next, he produces JVVCs in which there is a linking marker between V₁ and V₂ (V-i-V type) and other complex predicates at 2;07, all during a relatively short period. The paper thus gives support from the perspective of a CHILDES-based Japanese language acquisition study to Snyder’s (2012, 2016) hypotheses regarding TCP and GM.

1 Introduction
Japanese has a number of complex predicates, like resultative constructions, which behave as a single predicate semantically even though they include more than one predicative element. Japanese V-V compounds (henceforth, JVVCs) are a part of this complex predicate family because they are composed of two eventive predicates, namely, V₁ and V₂ (Kishimoto and Yumoto 2013: 3–4).

The aim of our study is to shed light on the following question: From the perspective of a Principles and Parameters approach (Chomsky 1981), what parameter setting gives rise to the JVVCs to be observed in Japanese? In this paper we provide evidence that one of the parameters is the Compounding Parameter, proposed by Snyder (1995, 2001, 2012, 2016).

2 Previous Research
2.1 Japanese V-V compounds
JVVCs, like N-N compounds, are a type of endocentric compound, as indicated in (1).

(1) a. matti-bako (match-box) ‘match box’, niku-dango (meat-ball) ‘meat ball’ (N-N compounds)
b. kir-i-taos(-u) (cut-i-topple(-PRES.)) ‘cut sth. down’
 but-tatak(-u) (hit-clap(-PRES.)) ‘beat’

(V-V compounds)¹

Boldface stands for a semantic head of the compounds. One useful diagnostic for headedness is based on negation. Fukushima (2017: 13–14, 18) observes that right-headed compounds permit negation of either the modifier (X₁) or the head (X₂) independently of the other. For example, in the case of V-V compounds as in (1b), Mary ga Taro o but-tatakata-nakat-ta. { (i) Demo but-ta. (ii) Demo tatai-ta. } ‘Mary did not beat Taro, { (i) but (she) hit (him). (ii) but (she) clapped (him). }’ Demo but-ta and demo tatai-ta in this negation test indicate [only \(\neg V_2 \)] and [only \(\neg V_1 \)] respectively. In the same vein, in the case of N-N compounds as in (1a), Matti-bako de-nai. Nanika mattaku betu-mono da. { (i) Demo matti da. (ii) Demo hako da. } ‘(It) is not a match box. It is something else altogether. ((i) But it is a match. (ii) But (it) is a box.) ’ In this example, nanika mattaku betu-mono da indicates \([\neg (N_1 N_2)]\) and also demo matti da and demo hako da indicate [only \(\neg N_2 \)] and [only \(\neg N_1 \)] respectively. Therefore, -tatak(-u) and hako are each a head. In contrast, left-headed compounds permit the modifier (X₂) but not the head (X₁), to be negated. For example, Mary ga gake-no sita-o mi-orosa-nakat-ta. { (i) Demo mi-ta. (ii) #Demo orosita-ta. } ‘Mary did not look down (at) the bottom of the cliff, ((i) but (she) did look (there). (ii) but (she) lowered her eyes (there).) ’ In this case, we cannot felicitously negate V₁ (mi-) alone, without also negating V₂ -oros(-u). Therefore, -oros(-u) is not a head, but mi- is, and also it follows that mi-oros(-u) is a left-headed compound.²

JVVCs can be morphologically divided into two types.³ In the first type, V₁ is in the renyoo form, where a linking element -i-, a preverbal-form suffix, is attached to V₁, as can be seen in (2a) (henceforward, V-i-V-type JVVC) (Kageyama 1993, a.o.). In the second type, both V₁ and V₂ are stems, as in (2b) (henceforth, V-V-type JVVC) (cf. Akita 2014)⁴.

(2) a. kir-i-taos(-u) (cut-i-topple(-PRES.)) ‘cut sth. down’,
 tatak-i-nobas(-u) (hit-i-extend(-PRES.)) ‘hammer sth. flat’⁵
 b. hik-tuk(-u) (pull-attach(-PRES.)) ‘attach’, hik-har(-u) (pull-stretch(-PRES.)) ‘pull’,
 kuw-tuk(-u) (eat-attach(-PRES.)) ‘stick’⁶

In the case of (2b), note that V₁ is directly merged into V₂. For example, the V₁ hik- in hik-tuk(-u) is merged into tuk(-u) directly; as witness, hik-tuk(-u) is pronounced hit-tuk(-u), due to regressive assimilation (i.e., gemination). What is important here is that the V-i-V-type JVVCs in (2a) do not merge V₁ into V₂ directly, but rather have the linking element -i- intervening between them. Interestingly, the V-i-V-type JVVCs in (2a), but not the V-V-type JVVCs in (2b), are translated into English by means of complex predicates, as shown in the resultative construction (RC) (e.g., John hammered the metal flat), and the verb-particle construction (VPC) (e.g., John cut the tree down) (cf. Kageyama 1999: 188–189).
2.2 The Compounding Parameter

Snyder (1995) has observed a correlation involving complex predicates. More precisely, Snyder (2001), for example, cross-linguistically observes that the occurrence of complex predicates like (3) is different from language to language.

\[(3)\]
- a. John painted the house red. (resultative)
- b. Mary picked the book up / picked up the book. (verb-particle construction) (Snyder 2001)

According to Snyder (1995, 2001), the main verb paint and the secondary predicate red in (3a), for example, or the main verb pick and the particle up in (3b), need to be combined at the point of semantic interpretation. For this reason, they form morphological compounds like paint-red and pick-up. A series of studies by Snyder found that languages (e.g., Khmer, Estonian, English, Dutch, Mandarin, and Thai) which are able to form morphological compounds at the point of semantic interpretation are a proper subset of languages which are able to freely create novel bare stem compounds (e.g., N-N compounds) in the syntactic derivation, as shown in Table 1:

<table>
<thead>
<tr>
<th>Languages</th>
<th>Separable particle?</th>
<th>Adjectival resultative?</th>
<th>Creative N-N compounding?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khmer, Estonian, English’, Dutch, Mandarin, Thai</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Japanese, American Sign Language</td>
<td>No</td>
<td>Yes(^8)</td>
<td>Yes</td>
</tr>
<tr>
<td>Egyptian Arabic, Javanese, Basque, Spanish, Serbo-Croatian</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Bare stem compounding stands for compounds in which there is no linking element present to connect the preceding element (X₁) with the following one (X₂). More precisely, according to Snyder (2016: 90), ‘bare stem’ is defined in the following way. A bare stem (i) could be used as an independent word, and (ii) is the form that inflectional morphology would combine with, but (iii) does not yet bear any inflection. That is why, N-N compounding in Japanese and English is seen as bare stem compounding, because there is no linking element between N₁ and N₂.\(^9\)

In fact, a language that is unable to create novel bare-stem compounds is unable to make complex predicates like RCs and VPCs. For example, Spanish does not have the ability to create novel bare-stem compounds, as shown in (4), and it also disallows RCs and VPCs. The corresponding meanings have to be expressed through a paraphrase, as in (5c) and (6b) or without a particle, as in (6b):

| 4) | a. banana box (English)
| | b. *banana caja, *caja banana (Spanish) (Snyder 2002) |
(5)

<table>
<thead>
<tr>
<th></th>
<th>(English)</th>
<th>(Spanish)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td>John beat the iron flat</td>
<td>John beat-PST el hierro hasta que estaba plano.</td>
</tr>
</tbody>
</table>

(6)

<table>
<thead>
<tr>
<th></th>
<th>(English)</th>
<th>(Spanish)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Mary lifted the box up.</td>
<td>María levantó la caja (arriba).</td>
</tr>
<tr>
<td>b.</td>
<td>Mary lift the box upwards</td>
<td>Mary lift-PST the box upwards</td>
</tr>
</tbody>
</table>

Based on the relation illustrated in Table 1, Snyder (1995, 2001, 2012, 2016) proposes that UG is equipped with the Compounding Parameter.

(7)

<table>
<thead>
<tr>
<th></th>
<th>(Snyder 2016: 109)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>The Compounding Parameter (TCP)</td>
</tr>
<tr>
<td></td>
<td>The language (does / does not) permit Generalized Modification.</td>
</tr>
<tr>
<td>b.</td>
<td>Generalized Modification (GM) (Snyder 2016: 110)</td>
</tr>
<tr>
<td></td>
<td>If α and β are syntactic sisters under the node γ, where α is the head of γ, and if α denotes a kind, then interpret γ semantically as a subtype of α’s kind that stands in a pragmatically suitable relation to the denotation of β.</td>
</tr>
</tbody>
</table>

According to Snyder (2016: 109), “TCP is a parameter of the syntax–semantics interface,” and “the [+TCP] setting makes available an interpretive rule,” GM, which plays an important role in the semantic interpretation both of novel compounds and of complex predicates like RCs and VPCs. For example, in the case of the N-N compound frog man, frog and man are syntactic sisters, and by Fukushima’s (2017) negation diagnostics, man is functioning as a semantic head, given that N₁ can be negated independently of N₂ and vice versa. Given that man denotes a kind of individual, it is indicated that frog man can be semantically interpreted as a subtype of man’s kind that stands in a pragmatically suitable relation to the denotation of frog. Furthermore, Snyder also applies GM to verbal predicates, which serve to specify a kind of event. For example, in the case of an RC like John did not wipe the table clean, wipe is covertly attached to clean, then a morphological compound wipe-clean is created. When applying Fukushima’s (2017) negation test, in “John did not wipe the table clean, (i) but John wiped it. (ii) (#) but John made it clean.),” we cannot felicitously negate wipe alone, without also negating make it clean. Thus, clean is not a head, but wipe is. Therefore, it follows that wipe-clean is a left-headed compound. When GM is applied to wipe-clean, it follows that the interpretation of wipe-clean is “a wiping event of the kind associated with a state of cleanliness.”

In fact, the parameter-setting process for [+TCP] in Japanese has been examined in an acquisition
study by Miyoshi (1999), who examined the spontaneous-speech corpus for the child Aki (Miyata 1995). As noted in 2.2, languages which are able to form syntactic complex predicates such as RCs are a proper subset of languages which are able to create bare stem compounds. According to Snyder (2007: 80), “[i]f the grammatical knowledge (including parameter setting and lexical information) required for construction A, in a given language, is a proper subset of the knowledge required for construction B, then the age of acquisition for A should always be less than or equal to the age of acquisition for B. (No child should acquire B significantly earlier than A).” That is to say, in this paper construction A is equal to bare stem compounds (e.g., N-N compounds), and construction B to complex predicates. Furthermore, what is needed to acquire construction B (i.e., complex predicates) is both [+TCP] and additional information about the morphosyntax of Japanese. On the other hand, construction A (i.e., bare stem compounds) only requires [+TCP]. Therefore, Miyoshi formulated a working hypothesis based on the relation between complex predicates and TCP and made the prediction shown in (8):

(8) a. Working hypothesis:
 A language allows (English-style) complex predicates only if it freely allows compounding of open-class lexical items.

b. Prediction:
 Japanese children acquire compounds as early as, or earlier than, complex predicates.

In the process of testing this prediction, Miyoshi found that Aki’s first clear use of bare stem N-N compounding occurred earlier than the first clear use of complex predicates:

(9) a. Bare stem compounding: (2;05:06)
 happa ki
 leave tree
 ‘(A book written about) leave and trees’

b. Su-causative: (2;06:29)
 kore ne owaʃi: [: owari] shi-te.
 this DM end make-IMP
 ‘Let us finish reading this (book).’

c. Double object dative: (2;07:19)
 kore ne(,) kuma ni age-ru.
 this DM bear DAT give-PRES.
 ‘This, I give the bear.’

d. Put locative: (2;07:12)
 koko oite ii yo.
 here put may DM
 ‘(You) may put (it) here.’ (Miyoshi 1999)

What is of importance here is that Aki produces bare stem N-N compounding earlier than the complex predicates such as Su-causatives, Double object datives, and Put locative, not vice versa. This result is consistent with (8b). Therefore, Miyoshi proposes that the working hypothesis in (8a) is supported by his corpus analysis of Japanese acquisition and that Japanese is a language where TCP is set as [+TCP].
3 Verification

3.1 JVVCs and the Compounding Parameter

In the previous section we overviewed research concerning TCP. Considering the relationship between JVVCs and TCP, it seems that TCP should play a central role, because both V-i-V-type JVVCs and V-V-type JVVCs are endocentric compounds and also V-i-V-type JVVCs are related to a type of complex predicates such as RCs and VPCs. Let us check whether V-i-V-type JVVCs and V-V-type JVVCs are related to TCP, that is, to GM. As Snyder (2016: 110) has discussed, GM can apply to verbal predicates that specify a kind of event. The view taken here is that GM applies in both types of JVVCs, as indicated in Table 2. For example, but-tatak(-u) (beat-clap) ‘beat’ (V-V type JVVCs) is, as shown in section 2.1, a right-headed compound by Fukushima’s (2017) negation test. Likewise, kir-i-taos(-u) (cut-i-topple) ‘cut sth. down’ (V-i-V type JVVCs) is a right-headed compound as well. In the case of kir-i-taos(-u), Mary ga ki-o kir-i-taos-nakat-ta. {i) Demo kit-ta. (ii) Demo taosi-ta.} ‘Mary did not cut the tree down, [(i) but (she) cut (the tree). (ii) but (she) toppled (the tree).]’ Demo kit-ta and demo taosi-ta indicate [only V2] and [only V1] respectively. Therefore, kir-i-taos(-u) is regarded as a right-headed compound. But-tatak(-u) and kir-i-taos(-u) are created by compounding V1 and V2, then morphological compounds such as but-tatak and kir-taos are created at the point of semantic interpretation. When GM applies to but-tatak and kir-taos, it follows that the interpretation of but-tatak is “a clapping event of the kind associated with an event of beating” and that of kir-taos is “a toppling event of the kind associated with an event of cutting.” Interestingly, the V-V-type JVVCs bears a morphological resemblance to N-N compounding in the sense that there are no linking elements between V1 and V2. This suggests that V-V-type JVVCs are quite similar to N-N compounding, although V-V-type JVVCs and V-i-V-type JVVCs, unlike N-N compounding, are unable to receive a free interpretation based on the context. It is conjectured that the conceptual calculus of events, as relates to complex predicates such as JVVCs, RCs, and VPCs, is highly restricted (Levin and Rappaport Hovav 1995: 54, Snyder 2016).

<table>
<thead>
<tr>
<th>Table 2 The relation between N-N compounding and JVVCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-N compounding</td>
</tr>
<tr>
<td>No linking element</td>
</tr>
<tr>
<td>Free Interpretation</td>
</tr>
<tr>
<td>GM</td>
</tr>
</tbody>
</table>

3.2 Working hypothesis and Prediction for the relationship of JVVCs to TCP

Based on the discussion in 3.1, we develop a working hypothesis and make a prediction with respect to the relationship between JVVCs and TCP:

(10) a. Working hypothesis:

One of the parameter-settings required for V-i-V-type JVVCs and V-V-type JVVCs is +TCP.
b. Predictions:
 1. The first clear uses of bare stem V-V compounding (V-V type) and bare stem N-N compounding will be observed at almost the same time.
 2. Japanese-speaking children will begin using V-V-type, V-i-V-type JVVCs and complex predicates at the same time, or V-V-type JVVCs will appear earlier than complex predicates including V-i-V-type JVVCs.

In the next section, we will check whether the working hypothesis and predictions are supported.

3.3 Supporting Evidence from the perspective of Child Grammar

3.3.1 Subject and Method

<table>
<thead>
<tr>
<th>Child’s name</th>
<th>Age (year;month;day)</th>
<th># of session</th>
<th># of production</th>
<th>Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aki</td>
<td>1;05:07–3;00:00</td>
<td>56</td>
<td>14,553</td>
<td>Miyata (2004)</td>
</tr>
</tbody>
</table>

The subject is Aki, because Aki was examined in Miyoshi’s (1999) study as well. We utilized the CHILDES database (CHILD Language Data Exchange System) (MacWhinney 2000, Oshima-Takane et al. 1998). Additionally, after conducting a search using CLAN software, we checked the data manually in order to describe them in more detail. We omitted the following data: Imitations of the adults’ utterances, recitation of songs, and repetitions.

3.3.2 Results and Discussion

Aki’s earliest examples of N-N compounding and JVVCs are presented in (11).

(11) a. Bare stem compounding (N-N compounding): *happa ki* (2;05:06) (cf. Miyoshi 1999)
 b. Bare stem compounding (JVVCs of the V-V type):
 kaw-tuk(-u) (eat-attach) ‘attach’ (2;05:13),
 hik-tuk(-u) (pull-attach) ‘attach’ (2;07:12)
 hik-tuke(-ru) (pull-attach) ‘stick’ (2;11:09),
 hik-har(-u) (pull-stretch) ‘drag’ (3;00:00)
 c. JVVCs of the V-i-V type
 ham-i-das(-u) (eat-i-throw.out) ‘stick out’ (2;07:12),
 tob-i-das(-u) (fly-i-throw.out) ‘fly out’ (2;07:26)

Aki’s first use of N-N compounding was seen at age 2;05:06, and his first use of a JVVC of the V-V type was seen at 2;05:13. This result supports the prediction of a tight relationship between nominal compounding and V-V-type JVVCs, and in addition supports the prediction in (10b.1) that the cases of bare-stem compounding (N-N compounding and V-V-type JVVCs) will be especially closely related to
one another. JVVCs of the V-i-V type begin to appear a bit later, at 2;07. Note that Aki also first produced complex predicates like Su-causatives, Double object datives, and Put locatives at the age of 2;07 (as shown in (9)). This suggests that V-i-V-type JVVCs are strongly related to complex predicates. The fact becomes congruent with the prediction in (10b.2). Therefore, it is suggested that both V-V-type and V-i-V type JVVCs are entwined with TCP. Thus, the working hypothesis in (10a) is borne out.16

3.4 Consequences and Theoretical Implications

This paper has shown that there is a high possibility that one of the parameters required for JVVCs is TCP, in the sense that GM applies in JVVCs and Aki, a Japanese-speaking child, first produces V-V-type JVVCs and N-N compounding at approximately the same time (age 2;05). Moreover, Aki first produces V-i-V-type JVVCs and complex predicates such as Su-causatives, Double object datives, and Put locatives at a slightly later point, at age 2;07. Thus, this paper gives support from the perspective of a CHILDES-based language acquisition study to Snyder’s (2012, 2016) hypotheses regarding TCP and GM. Note, however, that we need to look at additional children in order to confirm that the discussion in this paper is correct. This merits further research.

Furthermore, the evidence in Table 1 suggests that there might be an important internal division of [+TCP] languages into those that allow the VPCs, like English, and those that do not, like Japanese. This idea receives some initial support from the fact that the other [+TCP] language in Table 1 that disallows VPCs, namely American Sign Language (ASL), actually resembles Japanese somewhat in its use of V-V compounds as discussed in Liddell and Johnson (1986). Admittedly this suggestion is highly speculative, but it would perhaps be a useful topic for future research.

Notes

* This paper is based on the talk I presented at the 42nd Kansai Linguistic Society, Kyoto University, Japan (June 10, 2017). I would like to thank the organizers and the audience at the conference for valuable suggestions. I am in particular grateful to Taisuke Nishigauchi, Hiroshi Aoyagi, and, Yosuke Yoda for their invaluable comments and suggestions. Very special thanks go to William Snyder, Hideki Kishimoto, and two anonymous reviewers for their comments and fruitful discussion for this paper. The research reported is supported in part by JSPS Grant-in-Aid for JSPS Fellows Grant Number 16J02245.

1. Abbreviations used in this paper are as follows: NOM = nominative, ACC = accusative, DAT = dative, PRES = present tense, PST = past tense, IMP = imperative, and DM = discourse marker.

2. According to Fukushima (2017), when neither V₁ nor V₂ can be negated, it is viewed as dvandva compounds. For example, Umi-ga hikari-kagayaknakat-ta. {(i) #Demo hikat-ta. (ii) #Demo kagayaita.} ‘The ocean did not shine and glitter, (i) but (the ocean) shined. (ii) but (the ocean) glittered.’

3. The internal structure of JVVCs is controversial. According to Kageyama (1993), JVVCs are largely divided into lexical V-V compounds (LVVCs), as in (ia), and syntactic V-V compounds (SVVCs), as in (ib). It is considered that LVVCs have a single VP, whereas SVVCs involve two VPs.
Second, there are at least two possibilities. First, dvandva compounds are created by a rule other than GM (William Snyder, p.c.). Second, there are no dvandva compounds in Japanese, but what is seen as dvandva compounds are a right-headed compound (Niinuma 2015). This will be left to future research.

12. The reason why pound key # is put in round brackets is because one of the referees pointed out that when we read *wipe* with an emphasis and interpret *wipe* as a focus of negation, the sentence will be

(i) a. kir-i-taos(-u) ‘cut sth. down’: [VP [v kir-i][V taos]] (LVVC)
 b. kir-i-hazime(-ru) ‘begin cutting sth.’: [VP2[v [V1 [O [v kir-i]]] V2 hazime]] (SVVC)

In the case of SVVCs, a linking element -i- is inevitably inserted between V₁ and V₂, while its presence in LVVCs varies. Note that all the JVVCs in (2) are regarded as LVVCs. Furthermore, it is conjectured that the internal structure of V-V type JVVCs as in (2b) is the same as in (ia).

4. According to Akita (2014), the V₁ comprising V-V-type JVVCs behaves as a prefix which strengthens the meaning of V₂. Note that Akita uses not the term “stems” but “roots,” but we use the former. For more details, see Snyder (2016).

5. Japanese has both consonant-stem verbs like (2a), and vowel-stem verbs like *tabe-hazime(-ru) (eat-begin) ‘begin eating’* and *mi-oros(-u) (look-lowering) ‘look down’*. In the case of the latter, it is discussed that after the linking element -i- is inserted, it has to be deleted due to the sequence of two vowels at PF: *Tabe-i-hazime(-ru) > tabe-hazime(-ru) > tabe-hazime(-ru)* (Mamoru Saito, p.c.). Therefore, JVVCs whose V₁ is a vowel-stem verb are regarded as V-i-V type JVVCs in this paper.

6. Kut-tuku does not have the compositional meaning of V₁ and V₂ but expresses *to attach* in English.

7. Under Germanic, Snyder’s (2011) table mentioned only Dutch, but we have added English. Also, the bold line in Table 1 is not present in Snyder’s version.

8. Snyder (2011) adheres to Washio’s (1997) proposal, according to which there are no “strong” resultatives (i) in Japanese, but only “weak” resultatives (ii). According to Snyder (2012), the reason is that Japanese takes the unmarked (i.e., negative) setting of a proposed ‘Small Clause Parameter.’

(i) a. The joggers ran the pavement thin. (Strong resultative)
 b.* Rannaa-ga asufaruto-o usuku hasit-ta.
 Runner-NOM asphalt-ACC thinly run-PST.

(ii) a. John polished the metal shiny. (Weak resultative)
 b. Taro-ga kinzoku-o pikapikani migai-ta.
 Taro-NOM metal-ACC shiny polish-PST.

9. The following constructions are not bare stem compounds: *Izafet* constructions (e.g., Persian, Turkish) in which genitive case intervenes between N₁ and N₂, *construct-state* constructions (e.g., Hebrew, Arabic), *Noun-o-Noun* constructions (e.g., Classical Greek) in which a linking element -o- is inserted.

10. The conception of kind-of relation holding between the head and the whole Japanese lexical V-V compound is first proposed by Fukushima (2005), and later discussed by Snyder (2012, 2016).

11. GM is inapplicable to dvandva compounds. As for dvandva compounds, there are at least two possibilities. First, dvandva compounds are created by a rule other than GM (William Snyder, p.c.). Second, there are no dvandva compounds in Japanese, but what is seen as dvandva compounds are a right-headed compound (Niinuma 2015). This will be left to future research.

(i) a. kir-i-taos(-u) (cut-i-topple) ‘cut sth. down’: [VP [v kir-i][V taos]] (LVVC)
more acceptable. If the reviewer’s observation is correct, it might suggest that Fukushima’s (2017) negation test works not in the phrase-level compounds like *wipe…clean*, but in the word-level compounds. This is a significant topic for future research as to whether Fukushima’s negation test is applied not only to word-level compounds, but also phrase-level ones.

13. Miyoshi (1999) uses the term ‘root compounding’ for what we are calling ‘bare stem compounding.’ We will avoid the term ‘root’ because it currently has other, distinct uses in the morphology literature, notably those associated with Distributed Morphology (e.g., Marantz 1997), and might lead to confusion.

14. According to Miyata (2004), Aki is referring to a book about leaves and trees, and calls it “*happa ki*.” When Aki asks someone to read this book, he says “*happa ki no*” or “*happa ki ga*.”

15. -*i* in V-*i*-V-type JVVCs is deleted because it does not have any meaning at the point of semantic interpretation.

16. Indeed, there is a possibility that Aki initially treated V-V-type and V-*i*-V type JVVCs as a single (morphologically simplex) verb, but this may or may not be true. Certainly, although Aki was producing single verbs from the age of 1;08 (Kido 2017), if the initial V-V-type and V-*i*-V type JVVCs were single verbs, why would (apparent) V-V-type and V-*i*-V type JVVCs have been so much later than other verbs? Moreover, why would the first uses of (apparent) V-V-type JVVCs have been so close in time to the first uses of N-N compounding? One of the possible explanations for these facts is that the first apparent uses of V-V-type and V-*i*-V type JVVCs were genuinely V-V-type and V-*i*-V type JVVCs, and that V-V-type and V-*i*-V type JVVCs became possible only when Aki discovered that Japanese has the positive setting of TCP.

References

本稿では原理とパラメータのアプローチ（Chomsky 1981）の観点から日本語の動詞複合に必要なパラメータが何かという問いに取り組む。そして、動詞複合に必要なパラメータの1つがSnyder (2012, 2016) が提唱する複合語パラメータ（The Compounding Parameter）である可能性が非常に高いことを示す。その提案を裏付けるために、まず、日本語動詞複合がV1が直接V2に伴合する動詞複合のもの（V-Vタイプ）とV1とV2の間に連接要素（-i-）が介在しているものの（V-i-Vタイプ）に下位分類されることを示す。次に、V-Vタイプは連接要素（-i-）が何もない日本語名詞複合と形態的に類似していることを示す。それから、Snyder (2012, 2016) が提案している Generalized Modification が日本語名詞複合だけでなく、日本語動詞複合（V-VタイプとV-i-Vタイプの両方）にも適用されることを示す。さらに、上に記した考察を子どもの文法の観点からも裏付けるために、CHILDESを使用した実証研究を行った。日本語を母語とする子ども、Akiの発話を調査した結果、V-Vタイプの日本語動詞複合と日本語名詞複合の初出が2歳5ヶ月に観察されたのに対して、V-i-Vタイプの日本語動詞複合と複雑述語の初出は2歳7ヶ月に観察されたことを示す。最後に、V-Vタイプの日本語動詞複合と名詞複合の類似点の考察とSnyder (2012, 2016) が提案する Generalized Modification が日本語動詞複合にあなたの文法の観点からも裏付けることに、さらに、CHILDESを使用したV-Vタイプの日本語動詞複合と名詞複合の初出およびV-i-Vタイプの日本語動詞複合と複雑述語の初出が同時期に観察されたことを基に、複合語パラメータが心理的に実在している可能性が高いと提案する。